L16 Conditions for UMP with two-sided H_a

- 1. Three types of tests covered before Exam 2
 - (1) Simple H_0 and simple H_a Suppose sample X has pdf/pmf $f(X; \theta)$ and $\Lambda = \frac{f(X; \theta_1)}{f(X; \theta_0)}$.

$$\begin{array}{l} H_0: \ \theta = \theta_0 \text{ versus } H_a: \ \theta = \theta_1 \\ \phi(X) = \begin{cases} 1 & \Lambda > k \\ r & \Lambda = k \\ 0 & \Lambda < k \\ \text{is } \alpha \text{-level MP test} \end{cases}$$

(2) Simple H_0 and one-sided H_a

Suppose likelihood has monotone ratio in T(X), i.e., $\Lambda = \frac{f(X;\theta_2)}{f(X;\theta_1)}$ is an increasing function of T(X) for all $\theta_1 < \theta_2$.

$H_0: \theta = \theta_0 \text{ vs } H_a: \theta < \theta_0$	$H_0: \theta = \theta_0 \text{ vs } H_a: \theta > \theta_0$
$\int 1 T < k$	$\int 1 T > k$
$\phi(T) = \begin{cases} 1 & T < k \\ r & T = k \\ 0 & T > k \end{cases}$	$\phi(T) = \begin{cases} 1 & T > k \\ r & T = k \\ 0 & T < k \end{cases}$
$\begin{pmatrix} 0 & T > k \end{pmatrix}$	$\begin{bmatrix} 0 & T < k \end{bmatrix}$
with $\alpha = E_{\theta_0}[\phi(T)]$	with $\alpha = E_{\theta_0}[\phi(T)]$
is α -level UMP	is α -level UMP

- (3) One-sided H_0 and one-sided H_a Based on the study on $\beta_{\phi}(\theta)$ for tests in (2), we find that the tests in (2) are also α -level UMP tests for $H_0: \theta \geq \theta_0$ versus $H_a: \theta < \theta_0$ and $H_0: \theta \leq \theta_0$ versus $H_a: \theta > \theta_0$.
- 2. Problems in Exam 2

 $0.05 = P_{\theta_0}(\Lambda > K) + r P_{\theta_0}(\Lambda = K).$

$$r = \frac{0.05 - P_{\theta_0}(\Lambda > k)}{P_{\theta_0}(\Lambda = k)} = \frac{0.05 - P_{\theta_0}(\Lambda > 2)}{P_{\theta_0}(\Lambda = 2)} = \frac{0.05 - 0}{0.2} = 0.25.$$

Thus $\phi(X) = \begin{cases} 0.25 & X = 2\\ 0 & X = 1, 3, 4, 5 \end{cases}$ is MP test among all tests with level 0.05.

- (2) In 3 of Exam 2, $X_1, ..., X_n$ is a random sample from $N(0, \sigma^2)$.
 - (i) Find T such that the likelihood function has monotone likelihood ratio in T. $\sigma_1^2 < \sigma_2^2 \Longrightarrow \frac{f(X; \sigma_2^2)}{f(X; \sigma_1^2)} = \cdots = \text{is an increasing function of } T(X) = \sum_i X_i^2$
 - (ii) Find the distribution of T $X_1, ..., X_n$ iid $N(0, \sigma^2) \Longrightarrow \frac{\sum X_i^2}{\sigma^2} \sim \chi^2(n) \Longrightarrow T(X) = \sum X_i^2 \sim \sigma^2 \chi^2(n).$

(iii) For
$$H_0: \sigma^2 \le 4$$
 vs $H_a: \sigma^2 > 4$ find α -level UMP test.
 $\phi(X) = \begin{cases} 1 & T = \sum_{i=1}^n X_i^2 > k \\ 0 & T = \sum_{i=1}^n X_i^2 < k \end{cases}$
 $\alpha = E_{\sigma^2 = 4}[\phi(X)] = P_{\sigma^2 = 4}(T > k) = P(4\chi^2(n) > k) = P\left(\chi^2(n) > \frac{k}{4}\right),$
So $\frac{k}{4} = \chi^2_{\alpha}(n) \Longrightarrow k = 4\chi^2_{\alpha}(n).$

Thus
$$\phi(X) = \begin{cases} 1 & \sum_{i=1}^{n} X_i^2 > 4\chi_{\alpha}^2(n) \\ 0 & \sum_{i=1}^{n} X_i^2 < 4\chi_{\alpha}^2(n) \end{cases}$$
 is α -level UMP test.

3. A type of test covered after Exam 2

(1) Two-sided
$$H_a$$
 tests

$$f(X; \theta) = \exp[p(\theta) + q(X) + \theta T(X)].$$
 So sufficient T has $f(t; \theta) = a(\theta)b(t)e^{\theta t}.$

$$H_0: \theta = \theta_0 \text{ versus } H_a: \theta \neq \theta_0$$

$$\phi(T) = \begin{cases} 1 \quad T < c_1 \text{ or } T > c_2 \\ r \quad T = c_1 \text{ or } T = c_2 \\ 0 \quad c_1 < T < c_2 \end{cases}$$
with $\int_t \phi(t) f(t; \theta_0) dt = \alpha \text{ and } \int_t \phi(t) [f(t; \theta_0)]'_{\theta} dt = 0$
is UMP in α -level unbiased test class

(2) Two conditions for $\phi(T)$ $\int_{t} \phi(t)f(t; \theta_{0}) dt = \alpha \iff E_{\theta_{0}}[\phi(T)] = \alpha.$ $0 = \int_{t} \phi(t)[f(t; \theta_{0})]_{\theta}' dt = \int_{t} \phi(t)[a(\theta_{0})b(t)e^{\theta_{0}t}]_{\theta}' dt$ $= \int_{t} \phi(t) \left[\frac{a'(\theta_{0})}{a(\theta_{0})}f(t; \theta_{0}) + tf(t; \theta_{0})\right] dt = \frac{a'(\theta_{0})}{a(\theta_{0})}\alpha + E_{\theta_{0}}[T\phi(T)]$ So $\int_{t} \phi(t)[f(t; \theta_{0})]_{\theta}' dt \iff \int_{t} \phi(t)tf(t; \theta_{0}) dt = -\frac{a'(\theta_{0})}{a(\theta_{0})}\alpha \iff E_{\theta_{0}}[T\phi(T)] = -\frac{a'(\theta_{0})}{a(\theta_{0})}\alpha.$ This is one of the problems in HW07

This is one of the problems in HW07 Hence the two conditions for $\phi(T)$ are $\begin{cases} E_{\theta_0}[\phi(T)] = \alpha \\ E_{\theta_0}[T\phi(T)] = -\frac{a'(\theta_0)}{a(\theta_0)}\alpha \end{cases}$

Ex: Let $\psi(T) \equiv \alpha$. Then $\beta_{\psi}(\theta_0) = \alpha$ and $[\beta_{\psi}(\theta_0)]'_{\theta} = 0$, i.e.,

$$\int_{t} \psi(t) f(t; \theta_0) dt = \alpha \text{ and } \int_{t} \psi(t) t f(t; \theta_0) dt = -\frac{a'(\theta_0)}{a(\theta_0)} \alpha$$

where the second equation

$$\begin{split} \int_t \psi(t) t f(t; \theta_0) \, dt &= -\frac{a'(\theta_0)}{a(\theta_0)} \alpha & \iff \int_t t f(t; \theta_0) \, dt \, \alpha = -\frac{a'(\theta_0)}{a(\theta_0)} \alpha \\ & \iff \int_t t f(t; \theta_0) \, dt = -\frac{a'(\theta_0)}{a(\theta_0)} \alpha \\ & \iff E_{\theta_0}(T) = -\frac{a'(\theta_0)}{a(\theta_0)} \end{split}$$

Thus the two conditions for UMP $\phi(T)$ can also be written as

$$\begin{cases} E_{\theta_0}[\phi(T)] = \alpha \\ E_{\theta_0}[T\phi(T)] = \alpha E_{\theta_0}(T) \end{cases}$$

L17: Examples of UMP with two-sided H_a

- 1. UMP test of α -level unbiased tests
 - (1) Modified $\phi(T)$

Suppose random sample has joint pdf/pmf $f(x; \theta) = \exp[p(\theta) + q(x) + \theta T(x)]$. Then

For
$$H_0: \theta = \theta_0$$
 versus $H_a: \theta \neq \theta_0$

$$\phi(T) = \begin{cases} 1 & T < c_1 \text{ or } T > c_2 \\ r_i & T = c_i, i = 1, 2 \\ 0 & c_1 < T < c_2 \end{cases}$$
with $E_{\theta_0}[\phi(T)] = \alpha$ and $E_{\theta_0}[T\phi(T)] = \alpha E_{\theta_0}(T)$
is UMP α -level unbiased test.

(2) Generalization I

Suppose $f(x; \theta) = \exp[p(\theta) + q(x) + \eta(\theta)T(x)]$ where $\eta(\theta)$ is a 1-1 function.

(i) By reparameterization $\eta = \eta(\theta)$ with $\eta_0 = \eta(\theta_0)$,

For
$$H_0: \eta = \eta_0$$
 versus $H_a: \eta \neq \eta_0$

$$\phi(T) = \begin{cases} 1 & T < c_1 \text{ or } T > c_2 \\ r_i & T = c_i, i = 1, 2 \\ 0 & c_1 < T < c_2 \end{cases}$$
with $E_{\eta_0}[\phi(T)] = \alpha$ and $E_{\eta_0}[T\phi(T)] = \alpha E_{\eta_0}(T)$
is UMP α -level unbiased test.
(ii) Note that $\eta = \eta_0 \iff \theta = \theta_0$ and $E_{\eta_0}(\cdot) = E_{\theta_0}(\cdot)$.
For $H_0: \theta = \theta_0$ versus $H_a: \theta \neq \theta_0$
 $\phi(T) = \begin{cases} 1 & T < c_1 \text{ or } T > c_2 \\ r_i & T = c_i, i = 1, 2 \\ 0 & c_1 < T < c_2 \end{cases}$
with $E_{\theta_0}[\phi(T)] = \alpha$ and $E_{\theta_0}[T\phi(T)] = \alpha E_{\theta_0}(T)$
is UMP α -level unbiased test.

2. An example with discrete distribution (Modified from 6.8 (a) on p175) $X_1, ..., X_n$ is a random sample from Bernoulli(θ). For

$$H_0: \theta = 0.2$$
 versus $H_a: \theta \neq 0.2$

find UMP test in α -level unbiased test class with $\alpha = 0.1$. Assume n = 10.

(1) A general form

The joint pmf of the sample is

$$f(x; \theta) = \prod_{i} \theta^{x_{i}} (1-\theta)^{1-x_{i}} = \theta^{\sum x_{i}} (1-\theta)^{n-\sum x_{i}} = \left(\frac{\theta}{1-\theta}\right)^{\sum x_{i}} (1-\theta)^{n}$$
$$= \exp\left[n\ln(1-\theta) + \left(\ln\frac{\theta}{1-\theta}\right)\sum x_{i}\right]$$
where $\eta = \ln\frac{\theta}{1-\theta}$ is a 1-1 function of θ and $T = \sum X_{i} \sim B(n, \theta)$. Thus

For H_0 : $\theta = 0.2$ versus H_a : $\theta \neq 0.2$

$$\phi(T) = \begin{cases} 1 & T < c_1 \text{ or } T > c_2 \\ r_i & T = c_i, i = 1, 2 \\ 0 & c_1 < T < c_2 \end{cases}$$

with
$$E_{\theta=0.2}[\phi(T)] = 0.1$$
 and $E_{\theta=0.2}[T\phi(T)] = 0.1 \times E_{\theta=0.2}(T)$
is UMP test in α -level unbiased test class with $\alpha = 0.2$.

(2) Find c_1, c_2, r_1 and r_2

With $T \sim B(10, 0.2)$, by the first condition on $\phi(T)$,

$$0.1 = P(T < c_1) + P(T > c_2) + r_1 P(T = c_1) + r_2 P(T = c_2).$$

So, $P(T < c_1) \leq 0.1 \Longrightarrow c_1 \leq 0 \Longrightarrow c_1 = 0$. The first condition becomes

$$0.1 = P(T > c_2) + 0.10737r_1 + r_2P(T = c_2).$$

So, $P(T > c_2) \le 0.1 \Longrightarrow c_2 \ge 4$.

With $c_2 = 4$, the first condition becomes $0.10737r_1 + 0.08808r_2 = 0.06721$ and the second condition, $E_{0.2}[T\phi(T)] = 0.1 \times E_{0.2}(T)$, becomes

$$4r_2P(T=4) + \sum_{k=5}^{10} kP(T=k) = 0.1 \times 2$$
, i.e.,

 $\begin{array}{rcl} 0.2 &=& 4\gamma_2 \times 0.0881 + 5 \times 0.0264 + 6 \times 0.0055 + 7 \times 0.0008 + 8 \times 0.0001 \\ &=& 0.3524\gamma_2 + 0.1714. \end{array}$

Solve the equations. We have $\gamma_2 = 0.0812$ and $\gamma_1 = 0.5591$. Thus $c_1 = 0$, $c_2 = 4$, $r_1 = 0.5591$ and $r_2 = 0.0812$.

3. An example with continuous distribution

 $X_1, ..., X_n$ is a random sample from $N(\mu, \sigma_0^2)$. For

$$H_0: \mu = \mu_0$$
 versus $H_a: \mu \neq \mu_0$

find UMP test in α -level unbiased test class

(1) General form

 $f(x; \mu) = \dots = \exp\left[p(\mu) + q(x) + \eta(\mu)Z(x)\right] \text{ where } \eta(\mu) = \frac{\mu\sqrt{n}}{\sigma_0} \text{ is a 1-1 function of } \mu,$ and $Z(x) = \frac{\overline{X} - \mu_0}{\sigma_0/\sqrt{n}} \sim N(0, 1^2) \text{ under } H_0: \mu = \mu_0.$ So $\phi(Z) = \begin{cases} 0 & c_1 < Z < c_2\\ 1 & Z < c_1 \text{ or } Z > c_2 \end{cases} \text{ with } E_{\mu_0}[\phi(Z)] = \alpha \text{ and } E_{\mu_0}[Z\phi(Z)] = 0 \end{cases}$

- (2) By Condition 2 on $\phi(Z)$, $E_{\mu_0}[Z\phi(Z)] = \alpha E_{\mu_0}(Z) = \alpha \times 0 = 0$. So $c_1 = -c$ and $t_2 = c$.
- (3) By Condition 1 on $\phi(Z)$, $c = Z_{\alpha/2}$.
- (4) Result

 $H_0: \mu = \mu_0 \text{ versus } H_a: \mu \neq \mu_0$ Test Statistic: $Z = \frac{\overline{X} - \mu_0}{\sigma_0 / \sqrt{n}}$ Reject H_0 if $Z < -Z_{\alpha/2}$ or $Z > Z_{\alpha/2}$